Distribution of Irinotecan in Liver and a Human Tumor Xenograft Model by Tissue Imaging Mass Spectrometry

Maria C. Prieto Conaway1, Shousong Cao2, Farukh Durrani2, Youcef Rustum2, Ping Wang3, Khin Marlar3, Latif Kazim3

1Thermo Fisher Scientific, San Jose, CA, USA; 2Roswell Park Cancer Institute, Dept. of Cancer Biology, Buffalo, NY, USA; 3Roswell Park Cancer Institute, Dept. of Cell Stress Biology, Buffalo, NY, USA

Overview

Purpose: To determine irinotecan metabolites and their distribution in human tumors directly from tissue by MALDI LTQ XL Imaging MS. To establish MALDI ion trap technology as ideally suited for direct tissue analysis of drugs in tissue.

Methods: Nude mice with transplanted human head and neck tumors were treated with either irinotecan, methylselenocysteine (MSC), both drugs in combination, or non-treated (control). Frozen tumors and livers were sliced to ~12 µm thick and thaw-mounted on to non-conductive glass slides. Irinotecan metabolites were investigated by Single Reaction Monitoring or CRM with an LTQ XL coupled to a MALDI source.

Results: Metabolites previously identified in human urine samples were detected directly off tissue in all irinotecan treated tissues and those with both irinotecan plus MSC. SN-38-G, a known irinotecan metabolite, seems more uniformly distributed in the tumor treated with irinotecan plus MSC.

Introduction

Irinotecan, isolated from the Chinese tree Camptotheca acuminata, has shown strong antitumor activity against a wide variety of human solid tumor xenografts in mice. Irinotecan is a DNA topoisomerase I inhibitor that binds to and prevents dissociation of the DNA-topoisomerase I complex (involved in DNA replication), thereby inhibiting enzyme activity.

Lack of microvessels has been shown to offer resistance to irinotecan therapy in human head and squamous carcinomas. Two types of tumor xenografts, FaDu and A253, with high vascular and avascular regions, respectively, were used in the above referenced study. The purpose of our study is:

1) to demonstrate that the MALDI LTQ XL is ideally suited for direct tissue analysis of drugs in tissue; and
2) to utilize imaging capabilities for looking at regions that are accessible/inaccessible to the drug in the tumor in order to establish MALDI MS-based imaging as a viable technique in cancer therapy research.

Irinotecan and its active metabolites have been previously identified (Figure 1) by HPLC separation coupled to electrospray mass spectrometry detection from human urine samples.

Methods

Steps for the Study of Drug Distribution in Dosed Animals:

1) MALDI mass spectrometric studies of the drug in solution: The parent drug, irinotecan, was purchased from Pfizer Inc. (NY, NY, USA) and studied in positive ion mode. MALDI matrix was 2,5-DHB (Laser Biolabs, France). MALDI fragmentation patterns were compared to LC-MS results and direct infusion electrospray ionization (ESI, spectra provided by L. Kazim, RPCI).

2) Dosing: Nude mice were transplanted with the human head and neck tumor FaDu. The mice underwent four different treatments: untreated control, MSC alone, irinotecan alone, and irinotecan + MSC. Mice were treated with MSC orally, 0.2 mg/mouse/day daily for seven days, then irinotecan (100 mg/kg) was given by i.v. injection, either alone or added to MSC-treated mice.

3) Sample Preparation: The livers and tumors were excised, flash-frozen and kept at -80°C until sliced to ~12-15 micron thick sections in a cryotome (Thermo Fisher Scientific, MA, USA) and thaw-mounted on to glass plus slides (Thermo Fisher Scientific, USA). Glass slides with tissue samples were rinsed in ethanol for 30 sec, air dried by shaking, and placed under vacuum for ~30 min. This seemed to take care of excess lipids and salts that interfered and suppressed MS signals. Five additions of 0.1 µL of 6-aza-2-thiothymine (ATT, SIGMA,™ St. Louis, MO, USA) matrix were spotted on top of the tissue or sprayed with a commercial airbrush. Matrix solvent was either 50/50 (v/v) acetonitrile/0.1% TFA or 70/30 (v/v) methanol/0.1% TFA.

Figure 1: Metabolism of irinotecan (CPT-II) extracted from human urine
4) **Instrumentation:** An LTQ XL coupled to a MALDI source was used for imaging mass spectrometry, with custom data acquisition software to raster the tissue in the X and Y directions. The data was analyzed with in-house software (ImageQuest 1.0) to visualize the distribution of the drugs within the tumors. A 60 Hz nitrogen laser (LTB, Germany) with beam diameter of ~100 µm impinged directly on to the MALDI plate (at a 30º angle). Both ion activation techniques, collision-induced-dissociation (CID) and pulsed Q dissociation (PQD), were employed. PQD effectively lowers the low mass range in LTQ ion traps to m/z 50.

Results

Solution studies: The MALDI fragmentation spectrum (Figure 2) shows all major irinotecan ion fragments (marked in red) as found by electrospray ionization (data not shown) and LC-MS published work.

Metabolites found in treated tissue (ATT Manually spotted on tissue): Unwashed tissue did not produce any significant results as the MS/MS and MS³ fragmentation spectra of known metabolites were weak. Rinsing with ethanol for 30 sec. prior to matrix application decreased the amount of phospholipids and salts that can interfere or suppress analytes of interest, as shown in other tissue imaging applications.

We were able to detect the following metabolites (see Figure 1) in FaDu tumors treated with irinotecan and irinotecan plus MSC and not in the controls (not treated or MSC-treated only): SN-38 (m/z 393), SN-38G (m/z 569), isobaric M1 and/or M2 (m/z 603), and the parent drug irinotecan (m/z 587). Metabolites M1 and M2 are the oxidation of the CPT moiety and of the terminal piperidine, respectively. The MS/MS of m/z 603 contains weak fragment ions at 518 (-85, loss of piperedine) and m/z 502 (-101, loss of oxidized piperidine), which would indicate that both M1 and M2 metabolites are present in tissue, respectively. However, the MS³ of m/z 518, which would confirm the presence of M1 is weak and not conclusive. The peak at m/z 603 appears to be mostly M2, due to the prominent m/z 559 peak (-CO2), with MS³ data to confirm this (data not shown). We were not able to detect the NPC metabolite (m/z 519) directly, an indication of in vivo metabolized loss of a terminal piperidine, although loss of piperidine was evident through collision induced dissociation in the ion trap. Figure 3 shows the MS³ to truly isolate a specific precursor when working with complex tissue samples.

ATT matrix sprayed on tissue: Unmetabolized irinotecan was detected in the liver and FaDu tumors (data not shown) by imaging mass spectrometry. Parent drug and metabolites SN-38-G and M2 were convincingly identified from tissue by MS/MS and MS³ tandem mass spectrometry in positive ion mode. Figure 4 shows the distribution of two metabolites (SN-38 and its glucuronide form) in FaDu tumors treated with irinotecan alone and irinotecan plus MSC. MSC has been shown to increase irinotecan efficacy against tumors and found to be more effective in highly vascularized tumors such as FaDu than in avascular tumors (A253). Results from Figure 4 show m/z 349 more uniformly distributed in FaDu tumors treated with both MSC and irinotecan than in those treated with irinotecan alone, where the analyte appears clumped in regions. These results were consistent in three different tissue samples: two acquired at 100 µm resolution (MS/MS and MS³ data), and one at 50 µm resolution (MS/MS only), possibly indicating that coating variability during matrix application was not to blame. Results from the MS³ image are more specific and truly indicative of the metabolite, as controls showed some signal for MS/MS of m/z 393 (data not shown).

Conclusions

Most known irinotecan metabolites were identified by MS/MS and confirmed by MS³ using the LTQ XL with MALDI source directly from drug-treated tumor samples. The irinotecan metabolite SN-38-G seemed more uniformly distributed in FaDu tumors treated with both MSC and irinotecan than in those treated with irinotecan alone, where the analyte appears clumped in regions (MS/MS and MS³ data).

Rastering a commercial laser with beam of ~100 µm at a spacing of 50 µm does improve the resolution of the 2-dimensional image (Figure 4 a, c).

Given the complexity of tissue samples, MS³ is truly needed in MALDI tissue imaging to filter interfering and isobaric species that are part of the baseline chemical noise and isolated during MS/MS.

![Figure 2: Fragment ion spectrum of solution irinotecan by PQD of m/z 587.](image2.png)

Expected fragment ions in red.
Figure 3: Ability of MS² for effectively isolating intended precursor: MS/MS includes undesired phospholipid (m/z 184) and very little or none of the expected fragment ions (m/z 393 and 349) while MS³ shows the right metabolite fragment (m/z 349) in irinotecan treated tumor.

Figure 4: Distribution of m/z 349 fragment ion from fragmentation of SN-38 and SN-38-G metabolites in two FaDu tumor samples treated with either irinotecan (a, b) or irinotecan plus MSC (c, d). Figures a and c acquired at 50 µm resolution.
Tap our expertise throughout the life of your instrument. Thermo Scientific Services extends its support throughout our worldwide network of highly trained and certified engineers who are experts in laboratory technologies and applications. Put our team of experts to work for you in a range of disciplines – from system installation, training and technical support, to complete asset management and regulatory compliance consulting. Improve your productivity and lower the cost of instrument ownership through our product support services. Maximize uptime while eliminating the uncontrollable cost of unplanned maintenance and repairs. When it’s time to enhance your system, we also offer certified parts and a range of accessories and consumables suited to your application.

To learn more about our products and comprehensive service offerings, visit us at www.thermo.com.

References

Legal Notices

©2008 Thermo Fisher Scientific Inc. All rights reserved. SIGMA is a trademark of Sigma-Aldrich Co. and its affiliate Sigma-Aldrich Biotechnology. All other trademarks are the property of Thermo Fisher Scientific Inc. and its subsidiaries. This information is presented as an example of the capabilities of Thermo Fisher Scientific Inc. products. It is not intended to encourage use of these products in any manners that might infringe the intellectual property rights of others. Specifications, terms and pricing are subject to change. Not all products are available in all countries. Please consult your local sales representative for details.

View additional Thermo Scientific LC/MS application notes at: www.thermo.com/appnotes